Ecology and Evolution of Diseases
in Complex, Natural Systems

Paw print.
Wolf 926F in Yellowstone
Photo: Jort Vanderveen
Ambassador wolves for wolf conservation
Seacrest Wolf Preserve
Wolf watching in Yellowstone

Canine Distemper in Yellowstone

This is a phylogenetic study of a multi-host pathogen, called canine distemper virus. It has caused several outbreaks in the wolf population in Yellowstone National Park since the wolf reintroduction in 1995 and 1996. This study investigates whether the viral strains that caused the different canine distemper outbreaks in Yellowstone are closely related or not, suggesting either endemic persistence of canine sitemper virus in Yellowstone, or new introductions of the virus from elsewhere. Canine distemper has spilled over across many different species (not humans, yet). Because of its high mortality and rapid transmission it poses a major threat to wild carnivores such as wolves, bears, and foxes (and also endangered species such as tigers and snow leopards).

Canine Distemper in Alaska

This is a cross-species phylodynamic study of canine distemper virus in the Alaskan ecosystem. This study investigates the relatedness of different canine distemper virus strains across different carnivore species (grizzly bears, black bears, wolves, coyotes, and wolverines) and mesocarnivore species (Arctic foxes, red foxes, river otters) to predict potential transmission pathways and reservoir host species.

Parasite-Sharing Across Taxa

This is a project that determines when ecological factors (i.e., geography, host behavior, host life history, etc.) become more important for predicting parasite sharing between various host species than their phylogenetic relatedness (evolutionary factor). This is useful for predicting the most likely source of new emerging diseases threatening human health and the survival of endangered species.

Ecological Drivers of Dengue

This study uses an empirical dynamic modeling (EDM) approach to detect causality between ecological drivers and incidence in a complex vector-borne disease system: dengue dynamics in the Americas. Dengue is a mosquito-borne disease and the climate may affect mosquito survival, abundance, and thus disease transmission. EDM demonstrates that population dynamics (i.e., pool of susceptible individuals) modulates the climate effects (i.e., temperature and rainfall) on dengue incidence. This interdependency is important to consider when building models that forecast dengue epidemics for public health interventions. This study was published in Ecology Letters. doi:10.1111/ele.13652

Wolf pack in Yellowstone
Photo: Jort Vanderveen

Peer-Reviewed Journal Articles

* denotes co-first authorship

Hopkins SR, Sokolow SH, Buck JC, De Leo GA, Jones IJ, Kwong LH, LeBoa C, Lund AJ, MacDonald AJ, Nova N, Olson SH, Peel AJ, Wood CL, Lafferty KD. 2021. How to identify win–win interventions that benefit human health and conservation. Nature Sustainability. 4(4):298–304. doi:10.1038/s41893-020-00640-z

Athni TS, Shocket MS, Couper LI, Nova N, Caldwell IR, Caldwell JM, Childress JN, Childs ML, De Leo GA, Kirk D, MacDonald AJ, Olivarius K, Pickel DG, Winokur OC, Young HS, Cheng J, Grant EA, Kurzner PM, Kyaw S, Lin BJ, López RC, Massihpour DS, Olsen EC, Roache M, Ruiz A, Schultz EA, Shafat M, Spencer RL, Bharti N, Mordecai EA. 2021. The influence of vector-borne disease on human history: socio-ecological mechanisms. Ecology Letters. 24(4):829–846. doi:10.1111/ele.13675

Nova N, Deyle ER, Shocket MS, MacDonald AJ, Childs ML, Rypdal M, Sugihara G, Mordecai EA. 2021. Susceptible host availability modulates climate effects on dengue dynamics. Ecology Letters. 24(3):415–425. doi:10.1111/ele.13652

Allen WE*, Altae-Tran H*, Briggs J*, Jin X*, McGee G*, Shi A*, Raghavan R, Kamariza M, Nova N, Pereta A, Danford C, Kamel A, Gothe P, Milam E, Aurambault J, Primke T, Li W, Inkenbrandt J, Huynh T, Chen E, Lee C, Croatto M, Bentley H, Lu W, Murray R, Travassos M, Coull BA, Openshaw J, Greene CS, Shalem O, King G, Probasco R, Cheng DR, Silbermann B, Zhang F, Lin X. 2020. Population-scale longitudinal mapping of COVID-19 symptoms, behaviour and testing. Nature Human Behaviour. 4(9):972–982.

Smith JR, Hendershot JN, Nova N, Daily GC. 2020. The biogeography of ecoregions: Descriptive power across regions and taxa. Journal of Biogeography. 47(7):1413–1426. doi:10.1111/jbi.13871

Sokolow SH, Nova N, Pepin MK, Peel AJ, Pulliam JRC, Manlove K, Cross PC, Becker DJ, Plowright RK, McCallum H, De Leo GA. 2019. Ecological interventions to prevent and manage zoonotic pathogen spillover. Philosophical Transactions of the Royal Society B. 374(1782):20180342. doi:10.1098/rstb.2018.0342

Childs ML, Nova N, Colvin J, Mordecai EA. 2019. Mosquito and primate ecology predict human risk of yellow fever virus spillover in Brazil. Philosophical Transactions of the Royal Society B. 374(1782):20180335. doi:10.1098/rstb.2018.0335


Submitted manuscripts under review or in revision

* denotes co-first authorship

Nova N*, Glidden CK*, Kain MP, Lagerstrom KM, Skinner EB, Mandle L, Sokolow SH, Plowright RK, Dirzo R, De Leo GA, Mordecai EA. Impacts of anthropogenic change on biodiversity affect disease spillover risk. Current Biology (under review). Authorea preprint

Nova N. Cross-species transmission of emerging coronaviruses in humans and domestic mammals. Frontiers in Public Health – Planetary Health (under review). Authorea preprint

Couper LI, Farner JE, Caldwell JM, Childs ML, Harris MJ, Kirk DG, Nova N, Shocket MS, Skinner EB, Uricchio LH, Exposito-Alonso M, Mordecai EA. How will mosquitoes adapt to climate change? eLife (in revision). Authorea preprint

Childs ML*, Kain MP*, Harris M*, Kirk D, Couper L, Nova N, Delwel I, Ritchie J, Becker AD, Mordecai EA. The impact of long-term non-pharmaceutical interventions on COVID-19 epidemic dynamics and control: the value and limitations of early models. Proceedings of the Royal Society B (in revision). medRxiv preprint

Sokolow SH, Jones IJ, Wood CL, Lafferty KD, Garchitorena A, Hopkins SR, Lund AJ, MacDonald AJ, Nova N, Le Boa C, Peel AJ, Mordecai EA, Chamberlin A, Howard ME, Buck JC, Lopez-Carr D, Barry M, Bonds M, De Leo GA. More than one third of global human infectious disease burden is environmentally mediated, with disproportionate effects in rural poor areas. The Lancet Planetary Health (in revision). The Lancet preprint

Book Chapters

Kirk DG, Skinner EB, Shocket MS, Couper LI, Nova N, Athni TS, Pourtois JD, Farner JE, Childs ML, Nyathi S, Mordecai EA. Climate Change and Disease Ecology. In: Suzán G, Aguirre AA, Mills JM, editors. The Ecology of Infectious Diseases: Methods on Evolution, Biodiversity, and Environmental Interactions. Oxford University Press (under review).

Shocket MS, Anderson CB, Caldwell JM, Childs ML, Couper LI, Han S, Harris MJ, Howard ME, Kain MP, MacDonald AJ, Nova N, Mordecai EA. 2021. Environmental drivers of vector-borne diseases. In: Drake JM, Bonsall M, Strand M, editors. Population Biology of Vector-borne Diseases (Ecology and Evolution of Infectious Diseases Series).
Oxford University Press. ISBN:9780198853244

Published Abstract

Van Wert M, Nova N, Horowitz T, Wolfe J. 2008. What does performance on one visual search task tell you about performance on another? Journal of Vision. 8(6):312. doi:10.1167/8.6.312


Nova N, Alstergren P, Svensson C. 2012. Chronic inflammation and pain: Assessment of c-Fos and ATF-3 as markers of spinal neuronal activity in a pain model of rheumatoid arthritis. M.Sc. Thesis, Karolinska Institutet. PDF

Red fox
Photo: Jort Vanderveen

Logo for Bay Area Ecology and Evolution of Infectious Diseases conference in 2019.

Athni TS, Shocket MS, Couper LI, Nova N et al. 2021. Ecol. Lett.

Athni TS, Shocket MS, Couper LI, Nova N et al. 2021. Ecol. Lett.

Sokolow SH, Nova N et al. 2019. Phil. Trans. R. Soc. B.

Childs ML, Nova N et al. 2019. Phil. Trans. R. Soc. B.

Mordecai EA et al. 2019. Ecol. Lett.

Shocket MS et al. 2021. Population Biology of Vector-borne Diseases. Oxford University Press.

Shocket MS et al. 2021. Population Biology of Vector-borne Diseases. Oxford University Press.

Office Address

Room 101A, Bass Building,
327 Campus Drive,
Stanford, CA 94305